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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

What is called an “exponential algorithm”?....

For a NP-hard problem, an exact or heuristic algorithm for
which the worst-case (time/space) complexity can be
computed,

An Exact Exponential-Time Algorithm (E-ETA) provides an
optimal solution to the problem,

A Heuristic Exponential-Time Algorithm (H-ETA) provides a
solution which worst-case quality can be bounded
(approximation algorithm).
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About E-ETA :

An E-ETA is not intended to be good in practice (E-ETA vs
Branch-and-Bound algorithms),
What happen in the worst-case is the matter of E-ETA,
Find “theoretical” algorithms with worst-case time/space upper
bounds as low as possible...
The MIS problem has been shown to be solvable O∗(2n ) in 1977, O∗(1.381n ) in 1999,

O∗(1.2201n ) in 2009, ...

NB : O∗(exp(n)) = O(poly(n)exp(n))

In the future, E-ETA will start to beat in practice heuristics ?
1.2201n is smaller than n4 for n ≤ 90,

1.1n is faster than n4 for n ≤ 230,

Provide a quantitative information on the difficulty of a
NP-hard problem,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About H-ETA :

For a given heuristic H we compute a worst-case ratio ρ :
Z H

Z Opt ≤ ρ,
H-ETA are relevant for problems that cannot be approximated
(bounded ratio) in polynomial time,
The MIS problem cannot be approximated in polynomial time within ratio nε−1, ∀ε > 0

(Zuckerman, 2006).

The MIS problem can be approximated in O∗(γρn ) time within ratio ρ ≤ 1 by using an E-ETA

running in O∗(γn ) time ([0]).

Pay for an exponential time to get a guarantee on the quality
(but pay less than to solve to optimality),

[0] N. Bourgeois, B. Escoffier, V. Paschos (2011). Approximation of Max Independent Set, Min Vertex Cover and

related problems by moderately exponential algorithms, Discrete Applied Mathematics, 159(17) : 1954-1970
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

In this talk...

We first tackle E-ETA providing several techniques that can
be applied successfully applied to scheduling problems,

Next, we tackle H-ETA and first applications to scheduling
problems.

T’kindt Exponential Algorithms with applications to scheduling 7 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

In this talk...

We first tackle E-ETA providing several techniques that can
be applied successfully applied to scheduling problems,

Next, we tackle H-ETA and first applications to scheduling
problems.

T’kindt Exponential Algorithms with applications to scheduling 7 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

1 Introduction

2 Exact Exponential-Time Algorithms
Technique 1 : Dynamic Programming
Technique 2 : Branch-and-Reduce
Technique 3 : Sort&Search

3 Heuristic Exponential-Time Algorithms

4 Conclusions

T’kindt Exponential Algorithms with applications to scheduling 8 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A lot of works on graph or decision problems (70’s, 2000-),

3-SAT : O∗(1.3211n) time (Iwama et al., 2010),
Hamiltonian circuit : O∗(1.657n) time (Bjorklund, 2010),
MIS : O∗(1.2132n) time (Kneis et al, 2009),
List coloring : O∗(2n) time (Bjorklund and Husfeldt, 2006)
and (Koivisto, 2006),
...

A growing interest since ≈ 2005 in scheduling literature,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

What about scheduling problems (single machine) ?
Problem brute force wctc wcsc Reference

1|dec|fmax O∗(n!) O∗(2n ) exp [1]
1|dec|

∑
i fi O∗(n!) O∗(2n ) exp [1]

1|prec|
∑

i Ci O∗(n!) O∗((2− ε)n ) exp [2]
1|prec|

∑
i wiCi O∗(n!) O∗(2n ) exp [3]

1|di |
∑

i wiUi O∗(n!) O∗(2n ) exp [3]
O∗(1.4142n ) exp [4]

1|di |
∑

i Ti O∗(n!) O∗(2n ) exp [3] & [4]
1|di |

∑
i wiTi O∗(n!) O∗(2n ) poly [5]

1|ri , prec|
∑

i wiCi O∗(n!) O∗(3n ) exp [3] & [4]

[1] F. Fomin, D. Kratsch (2010). Exact Exponential Algorithms, Springer.

[2] M. Cygan, M. Philipczuk, M. Philipczuk, J. Wojtaszczyk (2011). Scheduling partially ordered jobs faster than

2n , Proceedings of 19th Annual European Symposium (ESA 2011), Lecture Notes in Computer Science, vol. 6942,

pp. 299-310.

[3] G. Woeginger (2003). Exact algorithms for NP-hard problems : A survey, in M. Junger, G. Reinelt, G. Rinaldi

(Eds) : Combinatorial Optimization – Eureka I shrink !, Springer, LNCS 2570.

[4] C. Lenté, M. Liedloff, A. Soukhal, V.T’kindt (2013). On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, 511, pp 13-22.

[5] M. Garraffa, L. Shang, F. Della Croce, V. T’Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

What about scheduling problems (others) ?
Problem brute force wctc wcsc Reference

P |dec|fmax O∗(mnn!) O∗(3n ) exp [4]
P |dec|

∑
i fi O∗(mnn!) O∗(3n ) exp [4]

P4||Cmax O∗(4n ) O∗(2.4142n ) exp [4]
P3||Cmax O∗(3n ) O∗(1.7321n ) exp [4]
P2||Cmax O∗(2n ) O∗(1.4142n ) exp [4]

P2|di |
∑

i wiUi O∗(3n ) O∗(1.7321n ) exp [4]

F2||C k
max O∗(2n ) O∗(1.4142n ) exp [4]

F3||Cmax O∗(n!) O∗(3n ) exp [6]
F3||fmax O∗(n!) O∗(5n ) exp [6]
F3||

∑
i fi O∗(n!) O∗(5n ) exp [6]

J2||C k
max O∗(2n ) O∗(1.4142n ) exp [7]

[4] C. Lenté, M. Liedloff, A. Soukhal, V.T’kindt (2013). On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, 511, pp 13-22.

[6] L. Shang, C. Lenté, M. Liedloff, V.T’kindt (2018). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.

[7] F. Della Croce, C. Koulamas, V.T’kindt (2016). A constraint generation approach for two-machine shop

problems with jobs selection, Eur. J. Oper. Research, submitted.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

We focus on three technics with application to scheduling :

Dynamic programming,
Branch-and-merge,
Sort&Search.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Let us consider the 1||fmax scheduling problem,

n jobs to be processed by a single machine. Each job i is
defined by :

a processing time pi ,
a non decreasing cost function fi depending on Ci ,
Goal : Find the permutation which minimizes fmax = maxi fi .

The worst-case complexity of ENUM...is in O∗(n!).
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Let be S ⊆ {1, . . . ,n},
Let Opt [S ] be the recurrence function calculated on set S :
Opt [S ] is equal to the minimal value of criterion maxi fi for
any permutation of the jobs in S .

We have :
Opt [∅] = −∞, if ft can be negative
Opt [∅] = 0, if ft cannot be negative
Opt [S ] = mint∈S{max

(
Opt [S − {t}]; ft(P(S ))

)
}

with P(S ) =
∑

i∈S pi .
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Lost with that recurrence function ? Proceed with the exercice,

Exercice.

Apply the dynamic programming algorithm on the following
instance :
n = 3, [pi ]i = [3; 4; 5], [di ]i = [4; 5; 8], fi(Ci) = Ci − di ,

T’kindt Exponential Algorithms with applications to scheduling 15 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

n = 3, [pi ]i = [3; 4; 5], [di ]i = [4; 5; 8], fi(Ci) = Ci − di ,

Enumerate all sets S with 1 element,

S = {1} : Opt [S ] = max(−∞; 3− 4) = −1,

S = {2} : Opt [S ] = max(−∞; 4− 5) = −1,

S = {3} : Opt [S ] = max(−∞; 5− 8) = −3,

Do on your own for all sets with 2 and 3 elements !
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 2 elements,

S = {1, 2} :

Opt [S ] = min
(
max

(
Opt [{2}]; f1(7)

)
; max

(
Opt [{1}]; f2(7)

))
,

⇒ Opt [{1, 2}] = min
(
max(−1; 3);max(−1; 2)

)
= 2

S = {1, 3} :

Opt [S ] = min
(
max

(
Opt [{3}]; f1(8)

)
; max

(
Opt [{1}]; f3(8)

))
,

⇒ Opt [{1, 3}] = min
(
max(−3; 4);max(−1; 0)

)
= 0

S = {2, 3} :

Opt [S ] = min
(
max

(
Opt [{3}]; f2(9)

)
; max

(
Opt [{2}]; f3(9)

))
,

⇒ Opt [{2, 3}] = min
(
max(−3; 4);max(−1; 1)

)
= 1
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Enumerate all sets S with 3 elements,

S = {1, 2, 3} : Opt [S ] = min
(
max

(
Opt [{2, 3}]; f1(12)

)
;

max
(
Opt [{1, 3}]; f2(12)

)
;

max
(
Opt [{1, 2}]; f3(12)

))
,

⇒ Opt [{1, 2, 3}] = min
(
max(1; 8);max(0; 7);max(2; 4)

)
=

4

This corresponds to the schedule (1, 2, 3).
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

Analyse of the worst-case time complexity...

Opt [S ] = mint∈S{max
(
Opt [S − {t}]; ft (P(S))

)
}

Usefull note : the computation of one Opt [] can be done in
O(n) time.

Fundamental question : how many computations of Opt []
have to be done ?

Generation of all subsets of a size k ≤ n,∑n
k=0

(
n
k

)
,

which, by means of Newton’s formula for sum of binomials :∑n
k=0

(
n
k

)
x kyn−k = (x + y)n ,

can be rewritten as : 2n .

The worst-case time (and space) complexity of DynPro is in
O∗(2n),
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About permutation problems...

This improves upon the time complexity of ENUM for the
permutation problem (O∗(n!)),

This Dynamic Programming algorithm has been presented by
Fomin and Kratsch [3]... this is dynamic programming accross
the subsets.

[3] Fomin F, Kratsch D (2010) Exact Exponential Algorithms. Springer
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Dynamic Programming AtS

Applicable on decomposable scheduling problems
(C (S ) =

∑
i∈S pi),

Works on the following problems : 1|dec|fmax , 1|dec|∑i fi ,
1|prec|∑i wiCi , 1|di |

∑
i wiUi , 1|di |

∑
i wiTi ...

... O∗(2n) time and space.

DPAtS can be extended ([6]) : a Pareto Dynamic
Programming enables to derive :

Problem wctc wcsc
F3||Cmax O∗(3n ) O∗(3n )
F3||fmax O∗(5n ) O∗(5n )
F3||

∑
i fi O∗(5n ) O∗(5n )

[6] L. Shang, C. Lenté, M. Liedloff, V.T’kindt (2018). An exponential dynamic programming algorithm for the

3-machine flowshop scheduling problem to minimize the makespan, Journal of Scheduling, 21(2) :227-233.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Pareto Dynamic Programming

Why a need for generalization ?

The 1||fmax problem is decomposable but, for instance, the
F3||Cmax is not,

F3||Cmax : Let n jobs to be scheduled on 3 machines (same routing from M1 to M3). Each job i is

defined by processing times pi,j , 1 ≤ j ≤ 3 and the goal is to find the permutation which minimizes

Cmax = maxi (Ci,3).

The intuition : when computing
”Opt [S ] = mint∈S{max

(
Opt [S − {t}]; ft(P(S ))

)
}”,

many sequences (S − {t}) (at most 2n) with different C 2
max

and C 3
max must be kept in memory.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-... What ? !

Branch-and-Reduce (BaR) ressembles to known exact
algorithms like Branch-and-Bound or Branch-and-Cut...

BaR are tree-search based algorithms for which we try to
reduce the a worst-case complexity,

A BaR algorithm implements three components :

A branching rule,
A reduction rule at each node,
A stopping rule.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

Consider the Maximum Independent Set (MIS) problem :

Let G = (V ,E ) be an undirected graph,

An independent set S is a set of vertices such that no two
vertices from S are connected by an edge,

The MIS problem consists in finding S with a maximum
cardinality,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

First case : the degree d(v) ≤ 1, ∀v ∈ V .

a b c

Add any vertex v with d(v) = 0 into S ,

Add a vertex v with d(v) = 1 into S and remove the linked
vertex (repeat),
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

Second case : the degree d(v) ≤ 2, ∀v ∈ V .

a b c

The graph is a set of chains,

By testing, for each chain, if a vertex is in S , the problem can
be solved in O(|V |) time.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

a b c

d e

g

Let us consider a BraRed algorithm with the following
branching rule :

Select the vertex v of maximum degree,
Create a child node with v ∈ S and a child node with v /∈ S .
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

Case 1 : b ∈ S , then a, c, e and f are removed. Vertex d ∈ S
by deduction.

Case 2 : b /∈ S , then c and f have degree 0 and are put in S .
Vertices a, d , e form a graphe of max degree 2... solvable in
polynomial time.

T’kindt Exponential Algorithms with applications to scheduling 28 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

Case 1 : b ∈ S , then a, c, e and f are removed. Vertex d ∈ S
by deduction.

Case 2 : b /∈ S , then c and f have degree 0 and are put in S .
Vertices a, d , e form a graphe of max degree 2... solvable in
polynomial time.

T’kindt Exponential Algorithms with applications to scheduling 28 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

Case 1 : b ∈ S , then a, c, e and f are removed. Vertex d ∈ S
by deduction.

Case 2 : b /∈ S , then c and f have degree 0 and are put in S .
Vertices a, d , e form a graphe of max degree 2... solvable in
polynomial time.

T’kindt Exponential Algorithms with applications to scheduling 28 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

Case 1 : b ∈ S , then a, c, e and f are removed. Vertex d ∈ S
by deduction.

Case 2 : b /∈ S , then c and f have degree 0 and are put in S .
Vertices a, d , e form a graphe of max degree 2... solvable in
polynomial time.

T’kindt Exponential Algorithms with applications to scheduling 28 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

In that case 2 nodes have been built.

Reduction rule : when a decision is taken on a vertex v ,
decisions are taken for all its neighborhood,

Stopping rule : for a node, stop branching as far as the
maximum degree is 2.

T’kindt Exponential Algorithms with applications to scheduling 29 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

In that case 2 nodes have been built.

Reduction rule : when a decision is taken on a vertex v ,
decisions are taken for all its neighborhood,

Stopping rule : for a node, stop branching as far as the
maximum degree is 2.

T’kindt Exponential Algorithms with applications to scheduling 29 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

General case : the maximum degree of vertices is at least 3.

Select vertex b of degree 4,

a b c

d e

f

a b c

d e

f

A chain...

In that case 2 nodes have been built.

Reduction rule : when a decision is taken on a vertex v ,
decisions are taken for all its neighborhood,

Stopping rule : for a node, stop branching as far as the
maximum degree is 2.

T’kindt Exponential Algorithms with applications to scheduling 29 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

The BraRed algorithm (main iterated loop) :

Put all vertices of degree 0 or 1 into S ,
Let v be the vertex with maximum degree :

if d(v) ≥ 3, create two child nodes : one with v ∈ S , another
with v /∈ S . Propagate to its neighborhood.
if d(v) < 3, solves the problem in polynomial time at the
current node.

The above processing is applied on any unbranched node in
BraRed.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

What is the worst-case complexity of BraRed ?

Let us observe the branching rule : T (n) is the time required
to solve a problem with n vertices,

We can state that :

T (n) ≤ T (n − 1− d(v)) + T (n − 1)

with v the vertex selected for branching.

The worst case is obtained when d(v) is minimal, i.e.
d(v) = 3.

So, in the worst case the time complexity for solving the
problem is T (n) = T (n − 4) + T (n − 1) with n = |V |.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce and the MIS

How can we recursively evaluate
T (n) = T (n − 4) + T (n − 1) ?

By assuming that T (n) = xn , we can write :
xn = xn−4 + xn−1

⇔ 1 = x−4 + x−1

Then, compute the largest zero of the above function,

By using a solver like Matlab (for instance), we obtain
O∗(1.3803n) as the worst-case time complexity for BraRed,

O∗(1.3803n) is not bad. Also, BraRed has a polynomial space
complexity,

Notice that this is an upper bound (not tight at all), that
could be refined.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Let us consider the 1|di |
∑

i Ti scheduling problem,

n jobs to be processed by a single machine. Each job i is
defined by :

a processing time pi , and a due date di ,
Ti = max(0;Ci − di) is its tardiness,
Goal : Find the permutation which minimizes

∑
i Ti .

The worst-case complexity of ENUM is in O∗(n!) time.

The worst-case complexity of DPAtS is in O∗(2n) time and
space.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We assume : p1 ≥ p2 ≥ ... ≥ pn and [k ] is the job in position
k in EDD,

To define the branching scheme, we make use of ([8]) :

Property
Let job 1 in LPT order correspond to job [k ] in EDD order. Then, job 1 can be set only in positions h ≥ k and

the jobs preceding and following job 1 are uniquely determined as

B1(h) = {[1], [2], . . . , [k − 1], [k + 1], . . . , [h]} and A1(h) = {[h + 1], . . . , [n]}.

Worst case : d1 ≤ d2 ≤ ... ≤ dn .

[8] E. L. Lawler (1977), “A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness”, Annals of

Discrete Mathematics 1, 331–342.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We assume (wc) : p1 ≥ p2 ≥ ... ≥ pn and d1 ≤ d2 ≤ ... ≤ dn ,

Branching scheme :

Remark : When job 1 is branched on position k two
subproblems of size (k − 1) and (n − k) have to be solved.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Exercice.

Build the search tree on the following instance :
n = 3, [pi ]i = [5; 4; 3], [di ]i = [6; 8; 10],
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

First level, the longest job is job 1 : it can be scheduled in
positions 1, 2 or 3 leading to the following nodes,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

Second level, the longest job is job 2,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

We get the following recursive relation :

T (n) = 2T (n−1)+2T (n−2)+...+2T (2)+2T (1)+O(p(n))

⇔ T (n) = 3T (n − 1) +O(p(n))

This yields O∗(3n) worst-case time complexity, and
polynomial space.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : the 1|di |
∑

i Ti

By making use of the following property ([9])...

Property

For any pair of adjacent positions (i , i + 1) that can be assigned to
job 1, at least one of them is eliminated.

... we can derive that :

T (n) = 2T (n−1)+2T (n−3)+...+2T (4)+2T (2)+O(p(n))

⇔ T (n) = 2T (n − 1) + T (n − 2) +O(p(n))

This yields O∗(2.4143n) worst-case time complexity, and
polynomial space.

[9] W. Szwarc and S. Mukhopadhyay (1996), “Decomposition of the single machine total tardiness problem”,

Operations Research Letters 19, 243–250.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : add-ons

Changing the way to do the analysis : Measure and Conquer,

Pruning nodes by use of an exponential memory :
Memo(r)ization,

Pruning nodes without the use of an exponential memory :
Merging,

1|di |
∑

i Ti : O∗(2n) time and poly space when DPAtS uses
O∗(2n) space ([5]).

[5] M. Garraffa, L. Shang, F. Della Croce, V. T’Kindt (2018). An exact exponential branch-and-merge algorithm for

the single machine tardiness problem. Theoretical Computer Science, 745, 133-149.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branch-and-Reduce : to conclude

BaR sounds like BaB (for instance), however there are
different,

Open question : what would be the practical efficiency of a
BaR with all the materials of a BaB included ? ? ? ?

The complexity analysis can be very complicated (Measure
and Conquer, merging, ...),

It is hard to get tight upper bounds on the worst-case
complexity,

Some researches focus on getting lower bounds on that
complexity,

Important point : leads to polynomial space ETA.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([6]) to solve the
knapsack problem,
Let us start with the KNAPSACK problem,

Let be O = {o1, . . . , on} a set of n objects,
Each object oi is defined by a value v(oi) and a weight w(oi),
1 ≤ i ≤ n,
The, integer, capacity W of the knapsack.
Goal : Find O ′ ⊆ O such that

∑
o∈O′ w(o) ≤W and∑

o∈O′ v(o) is maximum.

We can easily show that ENUM is in O∗(2n) time,

[6] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

The idea is the following : separate the instance into 2
sub-instances,

I1 I2

Instance I

Then, enumerate all partial solutions from I1 and all partial
solutions from I2,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

By recombination of partial solutions, find the optimal
solution of the initial problem

I1 I2

Instance IS1

S2

s1 s2

A complete solution s = s1 + s2

The combinatoric appears when building S1 and S2 by
enumeration (sort phase) and when finding in these sets the
optimal solution (search phase).
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

Let us go back to the KNAPSACK and see how it works on an
example,

We have n = 6, O = {a, b, c, d , e, f } and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d , e, f }

Next, we enumerate the set of all possible assignments for O1

(Table T1),

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Next, we do the same for O2 (Table T2),

T2 ∅ {e} {d} {f } {d , e} {e, f } {d , f } {d , e, f }∑
v 0 1 5 3 6 4 8 9∑
w 0 2 3 5 5 7 8 10

`k 1 2 3 3 5 5 7 8

Note : In table T2, columns are sorted by increasing order of∑
w .

Note : `k is the column number with maximum
∑

v “on the
left” of the current column.

That was the Sort phase !

Running time (and space) should be “about”2n/2,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Search phase can start,

For any column j ∈ T1, find the “best” complementing column
k ∈ T2,

Best : column k which maximizes
∑

w ... then column `k will
be the one which maximizes

∑
v ,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : the principles

Table 1

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

Table 2

T2 ∅ {e} {d} {f } {d, e} {e, f } {d, f } {d, e, f }∑
v 0 1 5 3 6 4 8 9∑
w 0 2 3 5 5 7 8 10

`k 1 2 3 3 5 5 7 8

Search phase (W = 9)

j ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
k {d, f } {d, e} {d, e} {d, f } {d} {d} {d, e} {e}

w(O′j ) + w(O′k ) 8 9 7 9 9 8 8 9

v(O′j ) + v(O′`k
) 8 9 10 10 12 10 12 10

Consequently, the optimal solution has value 12 and is achieved
with {a, b, d} or {b, c, d , e}.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Sort & Search is a powerfull technique that can be applied to
a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = ((b1, b
′
1), (b2, b

′
2) . . . (bnB , b

′
nB

)) a table of nB
couples,

Let f and g ′ be two functions from RdA+1 to R, increasing
with respect to their last variable,

The (SCP) :

Minimize f (~aj , bk )
s.t.

g ′(~aj , b
′
k ) ≥ 0

~aj ∈ A, (bk , b
′
k ) ∈ B .

There exists a Sort & Search algorithm in
O(nB log2(nB ) + nA log2(nB )) time and O(nA + nB ) space.

KNAPSACK : nA = nB = 2
n
2 ⇒ O∗(2

n
2 ) time and space.

T’kindt Exponential Algorithms with applications to scheduling 51 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = ((b1, b
′
1), (b2, b

′
2) . . . (bnB , b

′
nB

)) a table of nB
couples,

Let f and g ′ be two functions from RdA+1 to R, increasing
with respect to their last variable,

The (SCP) :

Minimize f (~aj , bk )
s.t.

g ′(~aj , b
′
k ) ≥ 0

~aj ∈ A, (bk , b
′
k ) ∈ B .

There exists a Sort & Search algorithm in
O(nB log2(nB ) + nA log2(nB )) time and O(nA + nB ) space.

KNAPSACK : nA = nB = 2
n
2 ⇒ O∗(2

n
2 ) time and space.

T’kindt Exponential Algorithms with applications to scheduling 51 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : formalization

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = ((b1, b
′
1), (b2, b

′
2) . . . (bnB , b

′
nB

)) a table of nB
couples,

Let f and g ′ be two functions from RdA+1 to R, increasing
with respect to their last variable,

The (SCP) :

Minimize f (~aj , bk )
s.t.

g ′(~aj , b
′
k ) ≥ 0

~aj ∈ A, (bk , b
′
k ) ∈ B .

There exists a Sort & Search algorithm in
O(nB log2(nB ) + nA log2(nB )) time and O(nA + nB ) space.

KNAPSACK : nA = nB = 2
n
2 ⇒ O∗(2

n
2 ) time and space.

T’kindt Exponential Algorithms with applications to scheduling 51 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k ) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB ) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k )

s.t.
g`(~aj , b

`
k ) ≥ 0, (1 ≤ ` ≤ dB )

~aj ∈ A, ~bk ∈ B .
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : generalization

By means of appropriate data structures (range trees) and
properties on rectangular range queries...

... we can establish a Sort & Search algorithm in
O(nB logdB2 (nB ) + nA logdB+2

2 (nB )) time and

O(nB logdB−12 (nB )) space ([4]).

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Consider the P3||Cmax scheduling problem :

3 identical machines are available to process n jobs,
Each job i is defined by a processing time pi and can be
processed by any of the 3 machines,
Find a schedule which minimizes the makespan
Cmax = maxi(Ci) with Ci the completion time of job i .

This problem is NP-hard.

The worst-case time complexity of ENUM is in O∗(3n),
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

The situation is pictured below (s1 comes from I1, s2 comes
from I2),

Let us state some necessary properties,

Let P`(s) be the sum of processing times of jobs assigned to
machine ` in s, ` ∈ J1, 3K,

Let P(s) be the sum of processing times of all jobs of s,
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : an application

Let us define δ`(s) = P3(s)− P`(s) as the difference between
the load of the last machine and machine `,
We have :

P(s) =
∑3
`=1 P`(s),∑2

`=1 δ`(s) =
∑3
`=1 δ`(s) = 3P3(s)− P(s).

Without loss of generality we can restrict to schedule where
the last machine gives the Cmax value,
Now, let us concentrate on the concatenation of two partial
schedules s and σ,
We have : Cmax (sσ) = max1≤`≤3 (P`(s) + P`(σ)),
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with applications to scheduling

Sort & Search : an application

We can show that the makespan of sσ is given by the last
machine iff (constraint) :

∀` ∈ J1, 2K, δ`(s) + δ`(σ) ≥ 0

Then, we have Cmax (sσ) = P3(s) + P3(σ) which can be
rewritten as (objective) :

Cmax (sσ) =
1
3

(
P(s) + P(σ) +

∑2
`=1(δ`(s) + δ`(σ))

)
.
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Sort & Search : an application

Reformulation

A schedule sσ is optimal for the P3||Cmax problem, iff the couple
(s,σ) is an optimal solution of the following problem :

Minimise
∑2

`=1 δ`(s) + δ`(σ)

s.t. ∀` ∈ J1, 2K, δ`(s) + δ`(σ) ≥ 0
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Sort & Search : an application (main lines)



~aj = (δ1(s
j
1), δ2(s

j
1))

(b0k , b
1
k , b

2
k ) = (δ1(s

k
2 ) + δ2(s

k
2 ), δ1(s

k
2 ), δ2(s

k
2 ))

f (~aj , b
0
k ) = (P + δ1(s

j
1) + δ2(s

j
1) + δ1(s

k
2 ) + δ2(s

k
2 ))/3

g1(~aj , b
1
k ) = δ1(s

j
1) + δ1(s

k
2 )

g2(~aj , b
2
k ) = δ2(s

j
1) + δ2(s

k
2 )

(1)
Besides f , g1 are g2 increasing function with respect to their last
variable.
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Sort & Search : an application

The complexity of Sort & Search is in
O(nB logdB2 (nB ) + nA logdB+2

2 (nB )) time,

Starting from I1 and I2, tables A and B have respectively
nA = nB = 3

n
2 columns,

Besides, dA = 2, and dB = 2

Then, the worst-case time complexity is in
O(3

n
2 log22(3

n
2 ) + 3

n
2 log42(3

n
2 )) = O∗(3

n
2 ) ≈ O∗(1.7321n).
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Sort & Search : to conclude

Sort & Search is an interesting technique for deriving “quickly”
E-ETA,

Requires exponential space,

In scheduling, it is usable for parallel machine scheduling
problems.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Time to conclude on E-ETA

A theoretical and nice research area,

Helps in understanding what makes a problem hard to be
solved,

It’s emerging in scheduling literature (problems are difficult),

With respect to the three techniques introduced in this talk :

Sort & Search seems to be applicable when the combinatorics
is only induced by “assignment decisions”,
Branch & Reduce and Dynamic Programming are more
suitable for permutation problems,
It is challenging to design reduction rules in Branch & Reduce
algorithms.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

1 Introduction
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About the problem

Definition

Given n jobs : N = {1, . . . ,n}, m parallel identical machines, each
job i has a processing time pi and a due date di . Determine the
job sequence on each machine which minimizes

∑
i Ui , with

Ui = 1 if job i is tardy ; 0 otherwise.

Problem denoted by P |di |
∑

i Ui .

NP-hard (Garey and Johnson, 1979), even in the case m = 2.

The question we had : can we approximate optimal solutions
for this problem ?

We focus on the approximation ratio of an heuristic H :

ρ =
∑

i U
H
i∑

i U
∗
i
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

About the problem

First result : Problem P2|di |
∑

i Ui does not admit a
polynomial-time approximation algorithm with a bounded
ratio ρ.

Deciding the existence of a schedule with
∑

i U
∗
i = 0 is

NP-hard.

What can we do if we pay for exponential computation time :
can we approximate in a moderately exponential time the
P |di |

∑
i Ui problem ?
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Approximation Algorithms

Generality

For NP-hard minimization problems, polynomial-time heuristic
algorithms H with a worst-case guarantee :

Fixed ratio : Z H

Z Opt ≤ ρ and polynomial time in input length,

PTAS : Z H

Z Opt ≤ (1 + ε) and polynomial time in input length
when ε is fixed,

FPTAS : Z H

Z Opt ≤ (1 + ε) and polynomial time both in input
length and 1

ε .

A large part of the scheduling literature...

Few works on approximation with moderately exponential
computation time (Sevastianov and Woeginger (1998), Hall
(1998), Jansen (2003))... complexities in f (ε,m) +O(p(n)).
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Exact Exponential-Time Algorithms

General objectives

For NP-hard problems, design exact algorithms with worst-case
running time guarantee.

Complexity O∗(cn), with c a constant as small as possible

In the remainder, we rely in the framework presented by
Paschos (2015) : find approximation algorithms with wc time
complexity in O∗(cn).

Paschos, V. (2015). When polynomial approximation meets exact computation. 4’OR,

13(3) :227-245
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Initial results

Theorem 1

Let d̃i be a deadline associated with job i , so that in a feasible
schedule job i must complete before d̃i . The existence of a feasible
schedule for the P |d̃i |− problem can be decided in O∗(m n

2 ) time
and space.

This result is shown by reformulating the P |d̃i |− problem as a
(MCP),

We denote by Af the algorithm solving the P |d̃i |− problem.

Lente et al. ([4]) proposed an E-ETA for solving the
P |di |

∑
i Ui problem, which requires O∗((m + 1)

n
2 ) time and

space in the worst case.

[4] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

A branching heuristic

We propose a first approximation algorithm, referred to as
Bapprox,

Let k ∈ N∗ be a given parameter,

Wlog, we assume d1 ≤ d2 ≤ ... ≤ dn ,

First, Af is run with d̃j = dj to check if a solution with∑
j U
∗
j = 0 exists,

If not, the n jobs are grouped into dnk e batches.
Each batch B` contains jobs {(`− 1) ∗ k + 1, ..., `k},
1 ≤ ` ≤ bnk c
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Algorithm Bapprox builds a binary search tree by branching at
each level ` on batch B` and scheduling all its jobs either early
of tardy.

Each leaf node s defines a set of possible early jobs Es , the
remaining jobs being tardy.
Algorithm Af is run to check if there exists a feasible schedule
with jobs in Es all early.
⇒ ∀i ∈ Es , d̃i = di , and ∀i ∈ N \Es , d̃i = +∞
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Exercice.

Apply Bapprox on the following instance :
n = 4, m = 2, [pi ]i = [5; 4; 3; 6], [di ]i = [4; 8; 9; 10].
Find the optimal solution and provide the ratio on this example.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Algorithm outline

Branch and evaluate all leaf nodes,

The solution returned is s3 with {3; 4} early and {1; 2} tardy,
and

∑
i Ui(s3) = 2,

The optimal solution is s∗ with {2; 3; 4} early and {1} tardy,
and

∑
i Ui(s

∗) = 1,
Here, the ratio is 2

1 = ... ?
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof (sketch) : Ratio.

Assume α batches are scheduled tardy by Bapprox,
But what is the situation in an optimal schedule ?
If Bapprox is not optimal then some tardy jobs are early in the
optimal solution,
For each of these batches u, in the optimal solution, only
`u ≥ 1 jobs are tardy,
Then, ρ ≤ αk∑α

u=1 `u
,

The ratio is maximum when
∑α

u=1 `u = α ⇒ ρ ≤ k .

T’kindt Exponential Algorithms with applications to scheduling 75 / 90



Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k (tight).

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof : worst-case time complexity.

Initial (feasibility) step requires O∗(m n
2 ) time.

Let LN be the list of all leaf nodes generated. A leaf node can
be represented by (E ;T ) two sets of early and tardy jobs.

We have : |LN | =∑d nk e`=0

(d nk e
`

)
.
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Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k .

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Proof : worst-case time complexity.

∀(E ;T ) ∈ LN , deciding of the feasibility requires O∗(m |E|
2 )

time, with |E | = k` and ` the number of early batches in E .
It follows that to build and test all leaf nodes the worst-case
running time is in :

O∗(∑d nk e`=0

(d nk e
`

)
(m

k
2 )`)

⇔ O∗((1 +m
k
2 )

n
k ),

by making use of the Newton’s binomial formula.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 2

Algorithm Bapprox admits a worst-case ratio ρ ≤ k .

Algorithm Bapprox requires O∗((1 +m
k
2 )

n
k ) time and O∗(m n

2 )
space.

Illustration (ratios and complexities) in the case m = 2 :
k ρ time
1 1 O(2.4142n)
2 2 O(1.7320n)
3 3 O(1.5643n)
4 4 O(1.4953n)
5 5 O(1.4610n)

. . .
10 10 O(1.4186n)

Noteworthy, by comparison with the EETA running in
O(1.7320n) time, algorithm Bapprox is relevant for k ≥ 3.
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Branching and preprocessing

How to decrease the ratio ρ of algorithm Bapprox ?

We add a preprocessing step (algorithm PBapprox).

Let us introduce a parameter c ∈ N∗.
The preprocessing generates all possible subsets of at most
bnc c tardy jobs among n and then, for each, solve the
feasibility problem on the remaining jobs.

If at least one of these subsets lead to a feasible schedule,
then the optimal solution of the P |di |

∑
i Ui problem is

found. Otherwise, algorithm Bapprox is used (on each subset
of size (n − bnc c)).
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 3

Algorithm PBapprox admits a worst-case ratio ρ ≤ k2+k(c−1)+1
k+c .
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Exact or Heuristic Exponential-Time Algorithms
with applications to scheduling

Analysis

Theorem 4

Algorithm PBapprox requires

O∗
(
max

(
2H (c)nm

n(c−1)
2c ; (ce)

n
c (1 +m

k
2 )

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c ).

Proof : worst-case time complexity.

The preprocessing phase : generation of subsets of size at
most bnc c tardy jobs and solution of feasibility problems on
the early jobs. Worst-case running time :

O∗(∑b nc ci=0

(
n
i

)
m

n−i
2 ).

This is a partial sum of binomials !
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n
c (1 +m

k
2 )
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time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c ).

Proof : worst-case time complexity.

No close formula, use of an upper bound :∑`
i=0

(
n
i

)
≤ 2H ( `

n
)n ,

with H ( `n ) = − `
n log2(

`
n )− (1− `

n ) log2(1− `
n ), 0 <

`
n < 1,

the binary entropy of `
n .
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The worst-case space requirement is in O∗(m n(c−1)
2c ).

Proof : worst-case time complexity.

We obtain the following reformulation :∑b n
c
c

i=0

(
n
i

)
m

n−i
2 ≤∑b nc ci=0

(
n
i

)
×m

n(c−1)
2c

≤ 2H (c)nm
n(c−1)

2c .

The preprocessing phase has a worst-case time complexity in

O∗(2H (c)nm
n(c−1)

2c ).
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2c ).

Proof : worst-case time complexity.

The branching phase : algorithm Bapprox requires

O∗((1 +m
k
2 )

n−b nc c
k ) time.

The branching phase has a worst-case running time in :

O∗(
(

n
b n
c
c
)
(1 +m

k
2 )

n−b nc c
k ).
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n
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k
2 )

n(c−1)
ck

))
time,

H (c) = −c log2(c)− (1− c) log2(1− c) and e is Euler’s number.

The worst-case space requirement is in O∗(m n(c−1)
2c ).

Proof : worst-case time complexity.

By noting that
(
N
K

)
< NK eK

KK with e being Euler’s number, we
obtain :(

n
b n
c
c
)
(1 +m

k
2 )

n−b nc c
k < ( ne

b n
c
c)
b n
c
c(1 +m

k
2 )

n(c−1)
ck

< (ce)
n
c (1 +m

k
2 )

n(c−1)
ck .

Finally, we have the worst-case time complexity stated in the
theorem.
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Analysis

Illustration (ratios and complexities) in the case m = 2 :
k ρ time
1 1 O(2.4142n )
2 2 O(1.7320n )
3 3 O(1.5643n )
4 4 O(1.4953n )
5 5 O(1.4610n )

. . .
10 10 O(1.4186n )

⇒

k c ρ time
3 1000 2.99 O(1.5760n)

100 2.98 O(1.6471n)
10 2.84 O(2.0813n)

4 1000 3.99 O(1.5066n)
100 3.97 O(1.5752n)
10 3.78 O(1.9984n)

. . .
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Generalizations

Weighted case : P |di |
∑

i wiUi ,

Algorithm Bapprox can be generalized by changing the
branching scheme (and making the wct analysis more
complicated),

Ratio : ρ = k ,

Worst-case time complexity : O∗(γn) time and O∗(m n
2 )

space, with γ = m
1
2δ and γ−k + γ−1+δ = 1.
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Conclusions

The P |di |
∑

i Ui problem can be approximated by moderately
exponential-time algorithms,

Algorithm Bapprox : a branching-based heuristic,

Algorithme PBapprox : improvement by adding a
preprocessing phase,

Need for improving the analysis of the worst-case time
complexity of PBapprox,

Can we handle a reduction of ratio ρ = k directly in the
branching scheme ?

Can we generalize this approach to other scheduling problems
with number of tardy jobs ?
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Conclusions

Exponential Time Algorithms provide us with worst-case
information,

Ok, finding ETA with reduced worst-case complexities is a
challenging (theoretical) issue,

Apparently, there is also a room for strong computational
impacts,

The idea : take advantage of decomposition approaches of
ETA, embed problem-dependent knowledge,

You may get efficient exact algorithms...

... even more with polynomial space ETA !
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