
On Scheduling Problems

Tutorial by:

Imed Kacem
imed.kacem@univ-lorraine.fr

Professor –LCOMS Lab –France

1

JPOC’11
June 24th, 2019 Metz

Outline

•  Scheduling problems
–  Structure, complexity and possible applications
–  Standard used approaches (exact and heuristic)

•  Polynomial approximation
–  Constant approximation
–  Polynomial Schemes (PTAS, FPTAS)

•  Effective approximation algorithms for
scheduling under non-availability constraints

•  Conclusions

2

3

Structure of scheduling problems

4

Solving a discrete optimization
problem can be reduced to the
selection of a solution among a set
B of feasible solutions. The set B
is finite and its cardinal depends
on the problem size N.

We have to find one optimal
solution which can provide the
maximum of effectiveness
(according to a set of criteria or
objectives).

 Set B of feasible solutions

Discrete optimization problems: definition

5

solving a scheduling problem can
be reduced to the organization of
a set of activities (jobs or tasks) by
exploiting the available capacities
(resources). This execution has to
respect different technical rules
(constraints) and to provide the
maximum of effectiveness
(according to a set of criteria or
objectives).

Machine M1

Machine M2

Machine M3

Machine M4

 tasks

resources

Scheduling problems: a definition

6

-  We have 4 jobs to be
performed on a single machine,

-  Every job j has a processing
time pj and a due date dj,

-  The objective is to schedule all
the jobs by minimizing the total
tardiness T,

-  Tardiness of job j is equal to
Tj=max(0, Cj-dj), where Cj is
the completion time of job j.

 3 4 1 2

Feasible schedule: T=0+2+7+1=10

 tasks

Scheduling problems: a first example 1//Sum(Tj)

Job j pj dj
1 4 5
2 2 4
3 3 7
4 5 10

 3

 4

 1

 2

0 C1=4 6 11 14

7

-  Decision: for every job i and job j we
must define the order;

-  We could use a binary variable Xi,j
which is equal to 1 if job i is performed
before job j (and equal to 0 otherwise);

-  Tardiness of job j is equal to Tj=max(0,
Cj-dj), where Cj is the completion time
of job j, can be linearized;

-  Question: find a constraint to compute
Tj according to Xi,j;

 3 4 1 2

Feasible solution:

X1,2=1; X1,4=1; X1,3=1; X2,1=0; X2,3=0…

Exercise: find an ILP model

Example: how to formulate 1//Sum(Tj)?

Job j pj dj
1 4 5
2 2 4
3 3 7
4 5 10

0 4 6 11 14

8

 5 4 6

 2

GANTT Diagram

How to present a schedule?

0 4 9 14

 3 1

0 3 6 10

Machine 1

Machine 2

9

: station

: Node
: Bus

: Tramway

Line 1

Line 2

Line 3

Line 4

§  schedule the trips in order
to:

 Maximize the service
quality

 Respect the temporal
contraints

§  organize the transportation
network

Objective

Application: the organization of a transportation
network

10 7

We aim to buy electronic market places at low and to sell them at high
prices (see Schmidt, EJOR).
We (the trader) own an initial asset A at time t = 0. We can obtain
dynamically a price quotation m ≤ p(t) ≤ M at every time t = 1, 2, . . . , T.
Parameters m and M are known in advance. Hence, we have to decide at
time t if accept this price for selling. Trading is closed once we accepted
some p(t). If we did not accept any price until time T − 1 we will be obliged
to accept the last proposed price at time T .
General problem: buy and sell at given periods.

p(t)

Online Trading Problems in Financial Markets

t T0

m

M sell

11 5

Example 2: logistical problems

Assign customers to vehicles,

Determine routes of vehicles

12 6

solution

13

Imed KACEM

6

11

Data visualisation in touch screens
Optimization in some specific keyboards

Scheduling for New
Technologies: Touch Screen

12

Scheduling for New Technologies:
Systems on Chips
- transformation of algorithms into hardware architectures or into mixed

architectures « hardware/software » providing the best performances
and reliability and embedded systems on chips.

- These scientific problems can be reduced to constrained scheduling
problems.

Grange, Kacem, Martin
Comp. & IE, 2018

 Set S of feasible solutions

Machine M1

Machine M2

Machine M3

Machine M4

1

2

3

4 5

6

7 8

9

10

[1,2,3,4,5,6,7,8,9,10]

[3,2,4,5,6,1,7,8,10,9]
[3,4,2,6,5,1,7,10,8,9]

[3,2,4,10,6,9,7,5,1,8]

[3,5,7,10,6,9,4,2,1,8]

[3,2,9,10,8,4,7,5,1,6]

[8,6,4,10,2,9,7,5,1,3]

[4,2,3,10,6,9,7,8,1,5]

[10,2,4,3,6,9,7,5,8,1]

15 15

-  Resources: can be used once,

Example: money, energy, …

-  They can be renewed in other
cases,

Example: machines, operators,..

 tasks

Scheduling problems: Main components

 1

 1’’ 1’ preemptive

Non-preemptive

 Resources

-  Mono-criterion: here, the
objective can be formulated in
a single function,

-  Multiple-criteria: here, we have
several objectives to be
optimized at the same time…

 Objectives

Constraints

-  They can be related to
resources: non-availability
constraints, capacity, placement
in the shop, …

-  They can be related to time:
release times, due dates,
precedence, delivery times …

-  We can also distinguish internal
and external constraints.

16 16

1|rj|Cmax è use FIFO (jobs are sorted
in increasing order of rj).
1|qj|Lmax è use Jackson (jobs are
sorted in decreasing order of qj).
1||Sum(wjCj) è use WSPT (jobs are
sorted in increasing order of pj/wj).
P||Sum(Cj) è use SPT (jobs are sorted
in increasing order of pj).

Scheduling problems: Notations
 Polynomial (exercise)

1||Sum(wjTj) è Strongly or weakly NP-
hard?

1|rj, pre|Sum(wjCj) è NP-hard in the
stronge sense?

 Open

NP-hard

1|rj, qj|Lmax è NP-hard in the
strong sense.
2||Cmax è NP-hard in the ordinary
sense.
1|rj|Sum(Tj) è NP-hard in the
strong sense.

1||Sum(Tj) è NP-hard in the
ordinary sense.

Notation α|β|γ
 α: description of the resources

β: description of tasks (precedence,
release times, deadlines, preemption,
no-wait…
γ: objective function(s)

http://www.informatik.uni-osnabrueck.de/knust/class/

17 17

Delivery times: illustration

Machine 1 2 j 4

Cj

Lj

Lj=Cj+qj

qj

Delivery dates
L4

Sufficient transportation resources

1, h1|qj|Lmax

18

Complexity

- Let us consider a problem which consists in finding a sequence of N jobs
on a set of machines with the aim of minimizing the total tardiness where
every job is characterized by a processing time and due date.
- Obviously, we have N possibilities for determining the job to be
scheduled in the first position. Then, N-1 remaining jobs will be candidate
to the second position. More generally, we will have (N-i+1) possible
remaining jobs to put in the i-th position. Hence, we deduce that there are
N.(N-1)...(N-i+1)...2.1 possible sequences (i.e., N! possibilities).
- To select one of these solutions, we need to measure the performance of
each solution.
-  Let suppose for example that N = 10 and we have a computer able in 0.1
s to explore the search space (constituted of the N! sequences), to
evaluate these sequences and to select the best one. Moreover, let us
assume that the same computer spends the same time for evaluating
sequences of different values of N.

19

Complexity

- This phenomenon is called the combinatorial explosion.
-  Most of scheduling (and discrete optimization) problems are
combinatorial and belong to a special class of hard problems: the NP-
Hard class.
-  Most of researchers think we cannot construct polynomial time
algorithms for solving problems of the NP-hard class (see Garey &
Johnson 1979).

N Computation time

15 4 days

20 220 centuries

25 136 billions of years!

20

Diversity

- The diversity leads to the specificity of any discrete optimization problem.
-  Consequently, we cannot imagine a generic solution.
-  Such a diversity is due to the existence of different and numerous
industrial configurations and systems to optimize.
-  Numerous classes of problems are related to different structures and
types of systems. For example, in scheduling we can have several types
of shops:

- Flow-shops
- Job-shops
- Open-shops
- Flexible job-shops

21 21

Flow-shop

-  For every job, all the operations follow the same sequence of machines.
-  This type is generally met in the production systems where the objective is to
maximize the produced quantity.
-  In a flow-shop problem, we have to schedule a set of jobs on a set of machines.
-  Every job is carried out by passing by all the resources.
-  The order must be identical for all the jobs.
-  The literature shows other possible extensions and types of this configuration
(hybrid flow-shop, permutation job-shop…).

M1

M2

M3

M4

Job 1
Job 2
Job 3

22

Job-shop

-  The operations of every job follow a
fixed sequence.
-  The sequence depends on the job.
-  This type of configuration is suitable
for the production of different types of
products.

M1

M2

M3

M4

Job 1

Job 2

Job 3

23 23

Open-shop

-  For all the operations of jobs, no fixed order is imposed.
-  Every job has to be performed on a determined set of resources.
-  No sequence of machines is imposed.

M1

M2

M3

M4

Job 1
Job 2

Job 3

24

Standard used approaches

25

Heuristic Methods

-  These methods cannot usually yield an optimal solution.
-  They are fast and they can ensure a compromise between quality and
computation time if they are rigorously implemented.
-  The use of these methods can be recommended when the studied
problem has a high level of hardness (for example, the NP-hard problems
in the strong sense).
-  Any effective heuristic needs a minimum effort in its design (local-
optimality properties).
-  The results that we can obtain by a heuristic can be experimentally
evaluated by comparing to the literature results.
-  The performance of a heuristic can also be compared to some lower
bounds and/or by establishing its worst-case performance analysis.
-  Different types of heuristics exist and are widely-used.

-  constructive heuristic methods (based on some priority rules),
-  local-search methods based on the exploration of the
neighbourhood of an existing solution (Tabu Search, Simulated
Annealing...)
-  population-based methods consisting in iterative improvements of a
set of solutions (Genetic Algorithms, Evolutionary Algorithms, Ant
Colonies...).

26

Heuristic Methods

-  The disadvantage of these methods consists in the empirical
performance of solution (we cannot evaluate the difference with the
optimal solution).
-  Another type of heuristics can overcome this disadvantage by yielding a
guarantied performance for any instance of the problem.
-  These heuristics can be obtained by using the polynomial approximation
techniques and the performance analysis in the worst-case.
-  This type of methods is generally very hard to construct and to analyze
(see Pinedo).

4
5
6
1
3
2

4
1
2
3
6
5

4
5
6
1
2
3

4
1
2
3
5
6

Parents before crossover : Obtained offspring :

Crossover position

27

Heuristic Methods with guaranteed performance

Machine 1 2 j 4

Cj

Lj

Lj=Cj+qj

qj

Delivery dates
L4

Sufficient transportation resources

28 28

Heuristic Methods with guaranteed performance

28

 12

J1
 1 7

J2
0 5

J3 Séquence σ0

 10 3

4
J1

0 1 7
J2 J4

5 9
J3

Séquence σ1

8
J1

0 2 7
J4

5 10
J3

Séquence σ2

J2

 11

J4

J1

T T+1

J2

0 3T

Sequence σ0

 2T+ 1 1

Sequence σ1

Sequence optimale σ*

J3

T T+1

J2

0 2T+1 T+2 1

J3 J1

J1

T T+1

J2

0 2T+ 1 1

J3

p1 = 1 ; q1 = 7 ;
p2 = 2 ; q2 = 6 ;
p3 = 3 ; q3 = 5 ;
p4 = 2 ; q4 = 4 ;
T1 = 5 ; ΔT = 2
g0 = ∅;
g1 = {J3} ;
g2 = {J2, J3} ;
ϕσ0 (P) = 16 ;
ϕσ1 (P) = 15 ;
ϕσ2 (P) = 15.

p1 = 1 ; q1 = 2T ;

p2 = T ; q2 = ε ;

p3 = T − 1 ; q3 = 0 ;

T1 = T ; ΔT = 1 où ε << T.

ρ(H) ≥ 3/2.

29 29

 π(1,h)
 T1 T2

0
π(2,h) π(g(h),h) …

 gh

 π(g(h)+1,h)

 δ(h)

 π(g(h)+2,h) …

 δ(h)

 δ'(h)

 π(r(h),h) π(r(h)+1,h) … π(n-|gh|,h)

Schedule σ’

 T1 T2

 …

Jobs of gh and pieces
of B2 have to be
scheduled before T1
and after B1 in σ’

 π(g(h)+1,h)

pπ(r(h),h) - δ'(h)

Pieces of job
π(n-|gh|,h)

B2
 B1

A’

Pieces of A’ will be
scheduled after job
π(g(h)+1,h) in σ’

Pieces of job
π(r(h)+1,h)

 …

Pieces of B1 will
keep the same
positions in σ’

Schedule σh

1)  Heuristic H generates at least one sequence σh (0 ≤ h ≤ l) such that in the
optimal solution σ∗ :

•  All the fixed jobs of gh have to be scheduled before T1
•  The critical job π (g(h) + 1, h) has to be scheduled after T2.

2) For every job i of gh, we have the following relation : q i ≤ q π(g(h)+1,h)
3) By using the splitting principle, we can establish that:

ρ(H) ≤ 3/2.

30

Exact Methods

- when the structure of the problem is suitable it is
possible to reach an optimal solution by applying
an exact method.
-  necessity of tools capable to explore implicitly the
search space.
-  this exploration allows us to reduce the space of
visited solutions to a sub-space in which at least
one optimal solution exists.
-  we can discard the sub-spaces of dominated
solutions in order to reduce the computation time.
-  this technique can be applied for arborescent
methods (branch-and-bound algorithms, polyhedral
approaches, integer programming methods,
dynamic programming…).
- It can be applied based on the following elements:
heuristic solutions, lower bounds, dominance rules,
valid inequalities, cuts, exploration strategies,
relations based on induction…
- the elaborated exact methods allow us at least to
improve the heuristic solutions when the optimal
solution cannot be reached in a reasonable
computation time.

14

25 21 22 18 14
A B C D E

21 14 18 17
D C B E

15 16 19
E C D

16 15
 C D

 E
15 Optimal solution :

ABDCE

31 31

-  We have m machines for performing N jobs;

-  Every job j has a processing time pj and
requires a number of Neighbor machines mj;

-  Overlopping of jobs is not allowed;

-  Preemption is not allowed;
-  The objective is to minimize the makespan;

 3

 4
 1

 2

Exercise: give an ILP model

Exercise 1: how to formulate parallel-machine
problems?

Job j pj mj
1 4 3
2 2 2
3 3 2
4 5 4

Time 12 8 3 0

machines

32 32

-  We have m machines for performing N jobs,
with precedence constraints;

-  Every job j has a processing time pj, a due
date dj and it requires a number of neighbor
machines mj;

-  Overlopping of jobs is not allowed;

-  Preemption of jobs is not allowed;
-  The objective is to minimize the total

tardiness;

 3

 4
 1

 2

Exercise: give an ILP model

Exercise 2: how to formulate parallel-machine
problems?

Job j pj mj
1 4 3
2 2 2
3 3 2
4 5 4

Time 12 8 3 0

machines

dj
10
3
4
5

33 33 33

Exercise 3: polynomial cases

We would like to prove the following problems are polynomial:

Problem 1:
1||Sum(Cj) è use SPT (jobs are sorted in increasing order of pj).

Problem 2:
1||Sum(wjCj) è use WSPT (jobs are sorted in increasing order of pj/wj).

Problem 3:
1|rj|Cmax è use FIFO (jobs are sorted in increasing order of rj).

Problem 4:
1|qj|Lmax è use Jackson (jobs are sorted in decreasing order of qj).

Problem 5:
1|dj|Tmax è use EDD (jobs are sorted in increasing order of dj).

34

Polynomial Approximation

35

Polynomial approximation

« It is the art to achieve, in polynomial time, feasible solutions with
objective value as close as possible (in some predefined sense) to the
optimal » Vangelis Paschos

The motivations:
- Practical motivation:

-  In several situations, we need to achieve feasible solutions in a
reasonable time (polynomial complexity).

-  The quality of a solution is generally very important.

- Theoretical motivation:

-  Polynomial approximation and combinatorial optimization are
strongly related and the knowledge in one field of them can
significantly contribute to the other.

-  Polynomial approximation can be used to evaluate and to study
the complexity of discrete optimization problems.

Polynomial approximation: Notations

-  I denotes an instance of a discrete optimization problem π
(minimization problem).

-  OPT(I) is the value of an optimal solution for I

-  H is an algorithm for solving π
-  H(I) is the value of the solution produced by H for I

-  r(H) is the standard approximation ratio defined as the maximum of

H(I)/OPT(I) over I

-  The closer the ratio r(H) to 1, the better the performance of H

Polynomial approximation: Classes

-  Ratios depending on the size of I (| I |)
-  Exp-APX (Travelling Salesman Problem)
-  Poly-APX (Graph Coloring Problem)
-  Log-APX (Set Covering Problem)

-  Constant ratios (independent of |I|)

-  APX (R||Cmax)

-  Ratios 1 + ε, for any ε > 0:
-  Polynomial time approximation scheme (complexity polynomial in |

I| but, eventually, exponential in 1/ε)
 PTAS (Pm||Cmax)

-  Fully polynomial time approximation scheme (polynomial in both |I|
and 1/ε)

 FPTAS (2||Cmax)

Polynomial approximation: Classes

Exp-APX

Poly-APX

Log-APX

APX

PTAS

FPTAS

Approximability classes for NP-hard problems (under the assumption P ≠ NP)
From the book by: Vangelis PASCHOS

 0

M2

Polynomial Approximation: Illustrations on 2||Cmax

-  The problem is to schedule n jobs on two parallel identical machines,
with the aim of minimizing the makespan (Cmax).
-  Every job i has a processing time pi.
-  The machine is available at time 0 and can process at most one job at a
time.
-  Without loss of generality, we consider that all the data are integers and
that jobs are sorted in the LPT order : p1 ≥ p2 ≥ … ≥ pn.
-  An optimal solution is composed of two sequences of jobs assigned to
the machines. In the two sequences any order is optimal. P is the total
processing time.
-  The problem is NP-hard in the ordinary sense.

0
M1

Cmax

1

2 3

4 5

 6 7 8

 0

M1

Constant Approximation: Illustrations on 2||Cmax

PROPERTY:
Any assignment of jobs to the two machines is a constant approximation
with a standard ratio no more than 2.

Proof:
For any instance I, we have OPT(I) ≥ P/2 and H(I) ≤ P.
Then, H(I) ≤ P ≤ 2.OPT(I) .

0
M2

P

1 2 3 4 5 6 7 8

 0

M2

Constant Approximation: A better heuristic H for 2||Cmax

Heuristic description:
Assign the jobs in the LPT order as soon as possible to the available
machine.

Standard approximation ratio:
For any instance I, we have H(I) ≤ 7/6.OPT(I).

0
M1

H(I)

1

2

3

4 5

 6

7

8

Sketch of proof:
H is optimal for n=1, 2, 3 and 4.

 0

M2

Constant Approximation: A better heuristic H for 2||Cmax

0
M1 1

H is optimal for n=1.

0

M2

0
M1 1

2

H is optimal for n=2.

M2

M1 1

2

H is optimal for n=3
(case 1: p1>p2+p3).

M2

M1 1

2 3

H is optimal for n=3
(case 2: p1 ≤ p2+p3).

3

Constant Approximation: A better heuristic H for 2||Cmax

M2

M1 1

2

H is optimal for n=4
(case 1: p1>p2+p3+p4).

3

H is optimal for n=4
(case 2: p2+p3 ≤ p1 < p2+p3+p4).

4 M2

M1 1

2 3 4

H is optimal for n=4
(case 3: p1 < p2+p3).

M2

M1 1

2 3

4

H is optimal for n=4
(case 4: p1 < p2+p3).

M2

M1 1

2 3

 4

Constant Approximation: A better heuristic H for 2||Cmax

M2

M1 1

2 3

H is not optimal for n=5
p1 = 3
p2 = 3
p3 = 2
p4 = 2
p5 = 2

M2

M1 4 1

5

2

3 5 4

0 7 0 6

Solution given by H Optimal solution

Constant Approximation: A better heuristic H for 2||Cmax

M2

M1 1

2 3

Let z denote the last job scheduled in this sequence. Let α be the starting
time of z and let β be the completion time on the other machine. We have:
 H(I)= α + pz
 α ≤ β
 OPT(I) ≥ P/2 = (α + pz + β)/2
Hence,
 H(I) – OPT(I) ≤ α + pz - (α + pz + β)/2 = (α + pz - β)/2 ≤ pz/2
Moreover, OPT(I) ≥ E(z/2).pz and z can be considered ≥ 5.
E(x) is the smallest integer greater or equal to x.
Then, (H(I) – OPT(I))/OPT(I) ≤ 1/(2.E(z/2)) ≤ 1/6 = 0.16667 which implies that:
 H(I) ≤ 1.1667 OPT(I).

4

5

0 α
Solution given by H

……

…… z

β

H(I)

46

PTAS exists:

A better algorithm than H for 2||Cmax

The idea is very simple!
Let ε > 0.

1. We divide the set of jobs in two
subsets G and S where G = { i | pi > εP/
2} and S = { i | pi ≤ εP/2}.
2. Enumerate all the assignments of G
on the two machines (their cardinal is
limited to 22/ε).
3. For every assignment A generated in
Step (2) complete by the jobs of S by
scheduling them iteratively on the less
loaded machine (in any order).
4. Select the best schedule from the
solutions obtained in Step (3).

Subset S

Subset G

47

PTAS exists:

A better heuristic algorithm than H for 2||Cmax

For any optimal solution OPT
there exists a solut ion
generated by PTAS where
w e h a v e t h e s a m e
assignment of great jobs
(from G).

Only the assignments of S
may be different.

The difference cannot be
more than the size of a small
job εP/2 ≤ εOPT.

The complexity is bounded
by O(n.21/ε).

M2

M1

0 Optimal solution

A solution given by PTAS

M2

M1

0

48
M2

C max

M1

FPTAS: An illustration for 2|rj|Cmax

-  The problem is to schedule n jobs on two parallel identical machines,
with the aim of minimizing the makespan (Cmax).
-  Every job i has a processing time pi and a release date ri.
-  The machine is available at time 0 and can process at most one job at a
time.
- Without loss of generality, we consider that all the data are integers and
that jobs are sorted in the FIFO order : r1 ≤ r2 ≤ … ≤ rn.
-  An optimal solution is composed of two FIFO sequences of jobs
assigned to the machines. In the two sequences only the FIFO order is
optimal. The problem is NP-hard in the ordinary sense.

49

Dynamic Programming

49

0

j

j

j

u

v

New Dynamic Programming: Illustration

50

UB

 0
Complexity of A:

u

v

UB

51

PRINCIPLE: modification of the
execution of an exact algorithm

Fully Polynomial Time Approximation Scheme
(FPTAS)

DEFINITION: Given ε>0, an FPTAS finds (1+ ε)-
approximation with a time-complexity polynomial
in (1/ ε) and in the input size.

52 52

UB

 0

Complexité de A′ε : O(n2/ε)

u

v

UB

53 53

Fully Polynomial Time Approximation Scheme
(FPTAS): the main results [Kacem 2009]

54 54

Some results in approximation theory

Topics Surveys
Bin Packing L. HALL
Covering and Packing D. HOCHBAUM
Scheduling D. SCHMOYS
Knapsack H. KELLERER
Symmetric Quadratic
Knapsack

I. KACEM, H. KELLERER, V.
STRUSEVICH

Graph Coloring V. PASCHOS

