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Outline 

•  Scheduling problems 
–  Structure, complexity and possible applications 
–  Standard used approaches (exact and heuristic) 

•  Polynomial approximation  
–  Constant approximation 
–  Polynomial Schemes (PTAS, FPTAS) 

•  Effective approximation algorithms for 
scheduling under non-availability constraints 

•  Conclusions 
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Structure of scheduling problems 
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Solving a discrete optimization  
problem can be reduced to the 
selection of a solution among a set 
B of feasible solutions. The set B 
is finite and its cardinal depends 
on the problem size N.   

We have to find one optimal 
solution which can provide the 
maximum of effectiveness 
(according to a set of criteria or 
objectives).  

   Set B of feasible solutions 

Discrete optimization problems: definition  
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solving a scheduling problem can 
be reduced to the organization of 
a set of activities (jobs or tasks) by 
exploiting the available capacities 
(resources). This execution has to 
respect different technical rules 
(constraints) and to provide the 
maximum of effectiveness 
(according to a set of criteria or 
objectives).  

Machine M1 

Machine M2 

Machine M3 

Machine M4 

   tasks 

resources 

Scheduling problems: a definition 
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-  We have 4 jobs to be 
performed on a single machine, 

-  Every job j has a processing 
time pj and a due date dj, 

-  The objective is to schedule all 
the jobs by minimizing the total 
tardiness T, 

-  Tardiness of job j is equal to 
Tj=max(0, Cj-dj), where Cj is 
the completion time of job j. 

    3        4       1   2 

Feasible schedule: T=0+2+7+1=10 

   tasks 

Scheduling problems: a first example 1//Sum(Tj) 

Job j pj dj 
1 4 5 
2 2 4 
3 3 7 
4 5 10 

    3 

       4 

      1 

  2 

0 C1=4 6 11 14 
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-  Decision: for every job i and job j we 
must define the order; 

-  We could use a binary variable Xi,j 
which is equal to 1 if job i is performed 
before job j (and equal to 0 otherwise);   

-  Tardiness of job j is equal to Tj=max(0, 
Cj-dj), where Cj is the completion time 
of job j, can be linearized; 

-  Question: find a constraint to compute 
Tj according to Xi,j;  

    3        4       1   2 

Feasible solution:  

X1,2=1; X1,4=1; X1,3=1; X2,1=0; X2,3=0…  

  

  

  

  

Exercise: find an ILP model 

Example: how to formulate 1//Sum(Tj)? 

Job j pj dj 
1 4 5 
2 2 4 
3 3 7 
4 5 10 

0 4 6 11 14 
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    5        4       6 

  2 

GANTT Diagram 

How to present a schedule? 

0 4 9 14 

    3       1 

0 3 6 10 

Machine 1 

Machine 2 
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: station 

: Node 
: Bus 

: Tramway 

Line 1 

Line 2 

Line 3 

Line 4 

§  schedule the trips in order 
to: 

 Maximize the service 
quality 

 Respect the temporal 
contraints 

§  organize the transportation 
network 

Objective 

Application: the organization of a transportation 
network  
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We aim to buy electronic market places at low and to sell them at high 
prices (see Schmidt, EJOR).
We (the trader) own an initial asset A at time t = 0. We can obtain 
dynamically a price quotation m ≤ p(t) ≤ M at every time t = 1, 2, . . . , T. 
Parameters m and M are known in advance. Hence, we have to decide at 
time t if accept this price for selling. Trading is closed once we accepted 
some p(t). If we did not accept any price until time T − 1 we will be obliged 
to accept the last proposed price at time T . 
General problem: buy and sell at given periods.

p(t)

Online Trading Problems in Financial Markets

t T0

m

M sell
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Example 2: logistical problems

Assign customers to vehicles,

Determine routes of vehicles
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solution
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Data visualisation in touch screens
Optimization in some specific keyboards

Scheduling for New 
Technologies:  Touch Screen

12

Scheduling for New Technologies:  
Systems on Chips
- transformation of algorithms into hardware architectures or into mixed

architectures « hardware/software » providing the best performances
and reliability and embedded systems on chips.

- These scientific problems can be reduced to constrained scheduling
problems.

Grange, Kacem, Martin  
Comp. & IE, 2018 



   Set S of feasible solutions 

Machine M1 

Machine M2 

Machine M3 

Machine M4 

1

2

3

4 5

6

7 8

9

10 

[1,2,3,4,5,6,7,8,9,10] 

[3,2,4,5,6,1,7,8,10,9] 
[3,4,2,6,5,1,7,10,8,9] 

[3,2,4,10,6,9,7,5,1,8] 

[3,5,7,10,6,9,4,2,1,8] 

[3,2,9,10,8,4,7,5,1,6] 

[8,6,4,10,2,9,7,5,1,3] 

[4,2,3,10,6,9,7,8,1,5] 

[10,2,4,3,6,9,7,5,8,1] 
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-  Resources: can be used once,  

Example: money, energy, … 

-  They can be renewed in other 
cases, 

Example: machines, operators,.. 

   tasks 

Scheduling problems: Main components 

      1 

  1’’   1’ preemptive 

Non-preemptive 

  Resources 

-  Mono-criterion: here, the 
objective can be formulated in 
a single function, 

-  Multiple-criteria: here, we have 
several objectives to be 
optimized at the same time… 

  Objectives 

Constraints 

-  They can be related to 
resources: non-availability 
constraints, capacity, placement 
in the shop, … 

-  They can be related to time: 
release times, due dates, 
precedence, delivery times … 

-  We can also distinguish internal 
and external constraints. 
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1|rj|Cmax è use FIFO (jobs are sorted 
in increasing order of rj). 
1|qj|Lmax è use Jackson (jobs are 
sorted in decreasing order of qj). 
1||Sum(wjCj) è use WSPT (jobs are 
sorted in increasing order of pj/wj). 
P||Sum(Cj) è use SPT (jobs are sorted 
in increasing order of pj). 

Scheduling problems: Notations 
  Polynomial (exercise) 

1||Sum(wjTj) è Strongly or weakly NP-
hard? 

1|rj, pre|Sum(wjCj) è NP-hard in the 
stronge sense? 

  Open 

NP-hard 

1|rj, qj|Lmax è NP-hard in the 
strong sense. 
2||Cmax è NP-hard in the ordinary 
sense. 
1|rj|Sum(Tj) è NP-hard in the 
strong sense. 

1||Sum(Tj) è NP-hard in the 
ordinary sense. 

 

Notation α|β|γ 
 α: description of the resources 

β: description of tasks (precedence, 
release times, deadlines, preemption,  
no-wait… 
γ: objective function(s) 

http://www.informatik.uni-osnabrueck.de/knust/class/   
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Delivery times: illustration 

Machine 1 2 j 4 

Cj 

Lj 

Lj=Cj+qj 

qj 

Delivery dates 
L4 

Sufficient transportation resources 

1, h1|qj|Lmax  
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Complexity  

- Let us consider a problem which consists in finding a sequence of N jobs 
on a set of machines with the aim of minimizing the total tardiness where 
every job is characterized by a processing time and due date.  
- Obviously, we have N possibilities for determining the job to be 
scheduled in the first position. Then, N-1 remaining jobs will be candidate 
to the second position. More generally, we will have (N-i+1) possible 
remaining jobs to put in the i-th position. Hence, we deduce that there are 
N.(N-1)...(N-i+1)...2.1 possible sequences (i.e., N! possibilities).  
- To select one of these solutions, we need to measure the performance of 
each solution.  
-  Let suppose for example that N = 10 and we have a computer able in 0.1 
s to explore the search space (constituted of the N! sequences), to 
evaluate these sequences and to select the best one. Moreover, let us 
assume that the same computer spends the same time for evaluating 
sequences of different values of N.  
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Complexity  

- This phenomenon is called the combinatorial explosion.  
-  Most of scheduling (and discrete optimization) problems are 
combinatorial and belong to a special class of hard problems: the NP-
Hard class.  
-  Most of researchers think we cannot construct polynomial time 
algorithms for solving problems of the NP-hard class (see Garey & 
Johnson 1979). 

N Computation time 

15 4 days 

20 220 centuries 

25 136 billions of years! 
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Diversity 

- The diversity leads to the specificity of any discrete optimization problem. 
-  Consequently, we cannot imagine a generic solution.  
-  Such a diversity is due to the existence of different and numerous 
industrial configurations and systems to optimize.  
-  Numerous classes of problems are related to different structures and 
types of systems. For example, in scheduling we can have several types 
of shops: 

- Flow-shops 
- Job-shops 
- Open-shops 
- Flexible job-shops 
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Flow-shop 

-  For every job, all the operations follow the same sequence of machines. 
-  This type is generally met in the production systems where the objective is to 
maximize the produced quantity.  
-  In a flow-shop problem, we have to schedule a set of jobs on a set of machines.  
-  Every job is carried out by passing by all the resources.  
-  The order must be identical for all the jobs.  
-  The literature shows other possible extensions and types of this configuration 
(hybrid flow-shop, permutation job-shop…).  

 

M1 
 

 

M2 
 

 

M3 
 

 

M4 
 

Job 1 
Job 2 
Job 3 
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Job-shop 

-  The operations of every job follow a 
fixed sequence.  
-  The sequence depends on the job.  
-  This type of configuration is suitable 
for the production of different types of 
products. 

 

M1 
 

 

M2 
 

 

M3 
 

 

M4 
 

Job 1 

Job 2 

Job 3 
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Open-shop 

-  For all the operations of jobs, no fixed order is imposed.  
-  Every job has to be performed on a determined set of resources.  
-  No sequence of machines is imposed. 

 

M1 
 

 

M2 
 

 

M3 
 

 

M4 
 

Job 1 
Job 2 

Job 3 
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Standard used approaches 
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Heuristic Methods 

-  These methods cannot usually yield an optimal solution.  
-  They are fast and they can ensure a compromise between quality and 
computation time if they are rigorously implemented.  
-   The use of these methods can be recommended when the studied 
problem has a high level of hardness (for example, the NP-hard problems 
in the strong sense).  
-   Any effective heuristic needs a minimum effort in its design (local-
optimality properties).  
-  The results that we can obtain by a heuristic can be experimentally 
evaluated by comparing to the literature results.  
-  The performance of a heuristic can also be compared to some lower 
bounds and/or by establishing its worst-case performance analysis. 
-  Different types of heuristics exist and are widely-used.  

-  constructive heuristic methods (based on some priority rules),  
-   local-search methods based on the exploration of the 
neighbourhood of an existing solution (Tabu Search, Simulated 
Annealing...)  
-  population-based methods consisting in iterative improvements of a 
set of solutions (Genetic Algorithms, Evolutionary Algorithms, Ant 
Colonies...).  
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Heuristic Methods 

-   The disadvantage of these methods consists in the empirical 
performance of solution (we cannot evaluate the difference with the 
optimal solution).  
-  Another type of heuristics can overcome this disadvantage by yielding a 
guarantied performance for any instance of the problem.  
-  These heuristics can be obtained by using the polynomial approximation 
techniques and the performance analysis in the worst-case.  
-  This type of methods is generally very hard to construct and to analyze 
(see Pinedo).  

4 
5 
6 
1 
3 
2 

4 
1 
2 
3 
6 
5 

4 
5 
6 
1 
2 
3 

4 
1 
2 
3 
5 
6 

Parents before crossover :  Obtained offspring : 

Crossover position 
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Heuristic Methods with guaranteed performance 

Machine 1 2 j 4 

Cj 

Lj 

Lj=Cj+qj 

qj 

Delivery dates 
L4 

Sufficient transportation resources 
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Heuristic Methods with guaranteed performance 
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 12 

J1 
   1 7 

J2 
0 5 

J3 Séquence σ0  

  10 3 

4 
J1 

0    1 7 
J2 J4 

5   9 
J3 

Séquence σ1  

8 
J1 

0   2 7 
J4 

5   10 
J3 

Séquence σ2  

J2 

 11 

J4 

J1 

T    T+1 

J2 

0 3T 

Sequence σ0  

   2T+ 1   1 

Sequence σ1  

Sequence optimale σ*  

J3 

T    T+1 

J2 

0 2T+1     T+2   1 

J3 J1 

J1 

T    T+1 

J2 

0    2T+ 1   1 

J3 

p1 = 1 ; q1 = 7 ;  
p2 = 2 ; q2 = 6 ; 
p3 = 3 ; q3 = 5 ;  
p4 = 2 ; q4 = 4 ;  
T1 = 5 ; ΔT = 2 
g0 = ∅;  
g1 = {J3} ;  
g2 = {J2, J3} ;  
ϕσ0 (P) = 16 ;  
ϕσ1 (P) = 15 ;  
ϕσ2 (P) = 15. 

p1 = 1 ; q1 = 2T ;  

p2 = T ; q2 = ε ;  

p3 = T − 1 ; q3 = 0 ;  

T1 = T ; ΔT = 1 où ε << T. 

ρ(H) ≥ 3/2. 
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 π(1,h) 
  T1                 T2 
 

0 
π(2,h)    π(g(h),h)   … 

 gh 
 
 

   π(g(h)+1,h) 

 δ(h) 
 
 

   π(g(h)+2,h)  … 

 δ(h) 
 
  δ'(h) 

 
 

   π(r(h),h)     π(r(h)+1,h)    …   π(n-|gh|,h)  

Schedule σ’ 

  T1                 T2 
 

  … 

Jobs of gh and pieces 
of B2 have to be 
scheduled before T1 
and after B1 in σ’ 
 
 

   π(g(h)+1,h) 

pπ(r(h),h) - δ'(h) 
 

Pieces of job 
π(n-|gh|,h)  

B2 
 B1 

 
A’ 
 

Pieces of A’ will be 
scheduled after job 
π(g(h)+1,h) in σ’ 
 
 

Pieces of job   
π(r(h)+1,h)  

  … 

Pieces of B1 will 
keep the same 
positions in σ’ 
 
 

Schedule σh  

1)  Heuristic H generates at least one sequence σh (0 ≤ h ≤ l) such that in the 
optimal solution σ∗ : 

•  All the fixed jobs of gh have to be scheduled before T1  
•  The critical job π (g(h) + 1, h) has to be scheduled after T2. 

2) For every job i of gh, we have the following relation : q i ≤ q π(g(h)+1,h) 
3) By using the splitting principle, we can establish that:  

ρ(H) ≤ 3/2. 
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Exact Methods 

- when the structure of the problem is suitable it is 
possible to reach an optimal solution by applying 
an exact method.  
-  necessity of tools capable to explore implicitly the 
search space.  
-  this exploration allows us to reduce the space of 
visited solutions to a sub-space in which at least 
one optimal solution exists.  
-  we can discard the sub-spaces of dominated 
solutions in order to reduce the computation time.  
-  this technique can be applied for arborescent 
methods (branch-and-bound algorithms, polyhedral 
approaches, integer programming methods, 
dynamic programming…).  
- It can be applied based on the following elements: 
heuristic solutions, lower bounds, dominance rules, 
valid inequalities, cuts, exploration strategies, 
relations based on induction…  
- the elaborated exact methods allow us at least to 
improve the heuristic solutions when the optimal 
solution cannot be reached in a reasonable 
computation time.  

  
14   

25   21   22   18   14   
A   B      C    D    E   

21   14   18   17   
D     C    B    E   

15   16   19   
E     C    D   

16   15   
  C    D   

 E   
15   Optimal solution   :   

ABDCE   
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-  We have m machines for performing N jobs; 

-  Every job j has a processing time pj and 
requires a number of Neighbor machines mj; 

-  Overlopping of jobs is not allowed; 

-  Preemption is not allowed; 
-  The objective is to minimize the makespan; 

    3 

       4 
      1 

  2 

Exercise: give an ILP model 

Exercise 1: how to formulate parallel-machine 
problems? 

Job j pj mj 
1 4 3 
2 2 2 
3 3 2 
4 5 4 

Time        12 8 3 0 

machines 
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-  We have m machines for performing N jobs, 
with precedence constraints; 

-  Every job j has a processing time pj, a due 
date dj and it requires a number of neighbor 
machines mj; 

-  Overlopping of jobs is not allowed; 

-  Preemption of jobs is not allowed; 
-  The objective is to minimize the total 

tardiness; 

    3 

       4 
      1 

  2 

Exercise: give an ILP model 

Exercise 2: how to formulate parallel-machine 
problems? 

Job j pj mj 
1 4 3 
2 2 2 
3 3 2 
4 5 4 

Time        12 8 3 0 

machines 

dj 
10 
3 
4 
5 
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Exercise 3: polynomial cases 

We would like to prove the following problems are polynomial:  
 
Problem 1:  
1||Sum(Cj) è use SPT (jobs are sorted in increasing order of pj). 
 
Problem 2:  
1||Sum(wjCj) è use WSPT (jobs are sorted in increasing order of pj/wj). 
 
Problem 3:  
1|rj|Cmax è use FIFO (jobs are sorted in increasing order of rj). 
 
Problem 4:  
1|qj|Lmax è use Jackson (jobs are sorted in decreasing order of qj). 
 
Problem 5:  
1|dj|Tmax è use EDD (jobs are sorted in increasing order of dj). 
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Polynomial Approximation 
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Polynomial approximation 

«  It is the art to achieve, in polynomial time, feasible solutions with 
objective value as close as possible (in some predefined sense) to the 
optimal » Vangelis Paschos 
 
The motivations: 
- Practical motivation: 

-  In several situations, we need to achieve feasible solutions in a 
reasonable time (polynomial complexity). 

-  The quality of a solution is generally very important. 
 
- Theoretical motivation: 

-  Polynomial approximation and combinatorial optimization are 
strongly related and the knowledge in one field of them can 
significantly contribute to the other. 

-  Polynomial approximation can be used to evaluate and to study 
the complexity of discrete optimization problems. 



Polynomial approximation: Notations 

-  I denotes an instance of a discrete optimization problem π 
(minimization problem). 

 
-  OPT(I) is the value of an optimal solution for I 
 
-  H is an algorithm for solving π 
-  H(I) is the value of the solution produced by H for I 
 
-  r(H) is the standard approximation ratio defined as the maximum of 

H(I)/OPT(I) over I 

-  The closer the ratio r(H) to 1, the better the performance of H 



Polynomial approximation: Classes 

-  Ratios depending on the size of I (| I |) 
-  Exp-APX (Travelling Salesman Problem) 
-  Poly-APX (Graph Coloring Problem) 
-  Log-APX (Set Covering Problem) 

 
-  Constant ratios (independent of |I|) 

-  APX (R||Cmax) 

-  Ratios 1 + ε, for any ε > 0:  
-  Polynomial time approximation scheme (complexity polynomial in |

I| but, eventually, exponential in 1/ε) 
     PTAS (Pm||Cmax) 

-  Fully polynomial time approximation scheme (polynomial in both |I| 
and 1/ε) 

   FPTAS (2||Cmax) 



Polynomial approximation: Classes 

Exp-APX 

Poly-APX 

Log-APX 

APX 

PTAS 

FPTAS 

Approximability classes for NP-hard problems (under the assumption P ≠ NP) 
From the book by: Vangelis PASCHOS 
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M2 

Polynomial Approximation: Illustrations on 2||Cmax 

-  The problem is to schedule n jobs on two parallel identical machines, 
with the aim of minimizing the makespan (Cmax). 
-  Every job i has a processing time pi. 
-  The machine is available at time 0 and can process at most one job at a 
time. 
-  Without loss of generality, we consider that all the data are integers and 
that jobs are sorted in the LPT order : p1 ≥ p2 ≥ … ≥ pn.  
-  An optimal solution is composed of two sequences of jobs assigned to 
the machines. In the two sequences any order is optimal. P is the total 
processing time. 
-  The problem is NP-hard in the ordinary sense.   

0 
M1 

Cmax 

1 

2 3 

4 5 

 6 7 8 
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M1 

Constant Approximation: Illustrations on 2||Cmax 

PROPERTY: 
Any assignment of jobs to the two machines is a constant approximation 
with a standard ratio no more than 2.  
 
Proof:  
For any instance I, we have OPT(I) ≥ P/2 and H(I) ≤ P.  
Then, H(I) ≤ P ≤ 2.OPT(I) .  

0 
M2 

P 

1 2 3 4 5  6 7 8 
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M2 

Constant Approximation: A better heuristic H for 2||Cmax 

Heuristic description: 
Assign the jobs in the LPT order as soon as possible to the available 
machine.  
 
Standard approximation ratio:  
For any instance I, we have H(I) ≤ 7/6.OPT(I).  

0 
M1 

H(I) 

1 

2 

3 

4 5 

 6 

7 

8 

Sketch of proof: 
H is optimal for n=1, 2, 3 and 4. 
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M2 

Constant Approximation: A better heuristic H for 2||Cmax 

0 
M1 1 

H is optimal for n=1. 

0 

M2 

0 
M1 1 

2 

H is optimal for n=2. 

M2 

M1 1 

2 

H is optimal for n=3  
(case 1: p1>p2+p3). 

M2 

M1 1 

2 3 

H is optimal for n=3  
(case 2: p1 ≤ p2+p3). 

3 



  

Constant Approximation: A better heuristic H for 2||Cmax 

M2 

M1 1 

2 

H is optimal for n=4  
(case 1: p1>p2+p3+p4). 

3 

H is optimal for n=4  
(case 2: p2+p3 ≤ p1 < p2+p3+p4). 

4 M2 

M1 1 

2 3 4 

H is optimal for n=4  
(case 3: p1 < p2+p3). 

M2 

M1 1 

2 3 

4 

H is optimal for n=4  
(case 4: p1 < p2+p3). 

M2 

M1 1 

2 3 

 4 



  

Constant Approximation: A better heuristic H for 2||Cmax 

M2 

M1 1 

2 3 

H is not optimal for n=5  
p1 = 3 
p2 = 3 
p3 = 2 
p4 = 2 
p5 = 2 

M2 

M1 4 1 

5 

2 

3 5 4 

0 7 0 6 

Solution given by H Optimal solution 



  

Constant Approximation: A better heuristic H for 2||Cmax 

M2 

M1 1 

2 3 

Let z denote the last job scheduled in this sequence. Let α be the starting 
time of z and let β be the completion time on the other machine. We have: 
           H(I)= α + pz 
           α ≤ β  
           OPT(I) ≥ P/2 = (α + pz + β)/2 
Hence, 
           H(I) – OPT(I) ≤ α + pz - (α + pz + β)/2 = (α + pz - β)/2 ≤ pz/2  
Moreover, OPT(I) ≥ E(z/2).pz and z can be considered ≥ 5.  
E(x) is the smallest integer greater or equal to x. 
Then, (H(I) – OPT(I))/OPT(I) ≤ 1/(2.E(z/2)) ≤ 1/6 = 0.16667 which implies that: 
                                         H(I) ≤ 1.1667 OPT(I). 

4 

5 

0 α 
Solution given by H 

…… 

…… z

β 

H(I) 
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PTAS exists:  

A better algorithm than H for 2||Cmax 

The idea is very simple! 
Let ε > 0.  
 
1. We divide the set of jobs in two 
subsets G and S where G = { i | pi > εP/
2} and S = { i | pi ≤ εP/2}. 
2. Enumerate all the assignments of G 
on the two machines (their cardinal is 
limited to 22/ε). 
3. For every assignment A generated in 
Step (2) complete by the jobs of S by 
scheduling them iteratively on the less 
loaded machine (in any order). 
4. Select the best schedule from the 
solutions obtained in Step (3).  

Subset S 

Subset G 
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PTAS exists:  

A better heuristic algorithm than H for 2||Cmax 

For any optimal solution OPT 
there exists a solut ion 
generated by PTAS where 
w e  h a v e  t h e  s a m e 
assignment of great jobs 
(from G). 
 
Only the assignments of S 
may be different.  
 
The difference cannot be 
more than the size of a small 
job εP/2 ≤ εOPT. 
 
The complexity is bounded 
by O(n.21/ε).  

M2 

M1 

0 Optimal solution 

A solution given by PTAS 

M2 

M1 

0 
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M2 

C max 

M1 

FPTAS: An illustration for 2|rj|Cmax 

-  The problem is to schedule n jobs on two parallel identical machines, 
with the aim of minimizing the makespan (Cmax). 
-  Every job i has a processing time pi and a release date ri. 
-  The machine is available at time 0 and can process at most one job at a 
time. 
- Without loss of generality, we consider that all the data are integers and 
that jobs are sorted in the FIFO order : r1 ≤ r2 ≤ … ≤ rn.  
-   An optimal solution is composed of two FIFO sequences of jobs 
assigned to the machines. In the two sequences only the FIFO order is 
optimal. The problem is NP-hard in the ordinary sense.   
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Dynamic Programming 

49 

0 

j 

j 

j 

u 

v 



New Dynamic Programming: Illustration  
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UB 

  0 
Complexity of A: 

u 

v 

UB 
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PRINCIPLE: modification of the 
execution of an exact algorithm 

Fully Polynomial Time Approximation Scheme 
(FPTAS) 

DEFINITION: Given ε>0, an FPTAS finds (1+ ε)-
approximation with a time-complexity polynomial 
in (1/ ε) and in the input size. 
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UB 

  0 

Complexité de A′ε : O(n2/ε) 

u 

v 

UB 
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Fully Polynomial Time Approximation Scheme 
(FPTAS): the main results [Kacem 2009] 
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Some results in approximation theory 

Topics Surveys 
Bin Packing L. HALL 
Covering and Packing D. HOCHBAUM 
Scheduling  D. SCHMOYS 
Knapsack H. KELLERER 
Symmetric Quadratic 
Knapsack 

I. KACEM, H. KELLERER, V. 
STRUSEVICH 

Graph Coloring  V. PASCHOS 


