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Approximation

0 Approximation algorithms: intractable problems, find the best
solution possible (under limited resources)

O Worst-case paradigm

Approximation ratio = max ALG(I)/OPT(I)



Approximation

0 Approximation algorithms: intractable problems, find the best
solution possible (under limited resources)

OWorst-case paradigm Approximation ratio = max ALG(I)/OPT(I)

a lower fractional
bound  dual OPT OPT ALG

— i —————

0 Mathematical programming: a principled approach

O (Linear) relaxation '
O Dual as a lower bound .




Approx. ratio vs Integrality gap

a lower fractional
bound  dual OPT OPT ALG
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LP-based methods

Given an optimization problem

0 Rounding
© construct a linear formulation LP
o efficiently solve LP and get an optimal fractional solution

© round the fractional solution to an integer one

a lower fractional
bound  dual OPT OPT ALG

———— —e—



LP-based methods

Given an optimization problem

O Primal-Dual
O construct a linear formulation

© construct primal (integer) solution and dual (fractional) solution

© bound the primal/dual cost !

a lower fractional
bound  dual OPT OPT ALG

—————0—



O Iterative Rounding

0 Primal-Dual with Configuration LPs



Iterative Rounding



Iterative Rounding: Key lemma

@ Rank Lemma:
Let P={Ax >0b,x > 0}

Assume that ™ be an extreme point solution such that

r; >0VI<j<m
Then,

the maximal number of linearly independent contraints A;z* = b;

equals

the number of variables \ /




Maximum Bipartite Matching

Input: bipartite graph G(V7, 15) with weights on edges

Output: a matching of maximum weight

Vi Vo

Formulation

r. = 1 if the edge is selected

min E Wel e
(&

LP(G)




Rank Lemma

¥ Lemma:

Assume that x be an extreme point solution such that . > 0 Ve.

Then, there exists W C V; U V5 such that:;

Vi Vo

o x(d(v)) = Z Te=1YveW
ecd(v)

© the characteristic vectors in {y(§(v)) : v € W}
are linearly independent.

o [W|=|E]|




Algorithm

0 Initially, F' < ()

OWhile B(G) % 0 do
© Find an optimal extreme point solution x .\‘
of LP(G)

olf x. =0 thenupdate E(G) < E(G) \ e

olf z. =1 thenupdate E(G) < E(G)\e, F'< FUe



Analysis

@ Lemma: there always exists an edge

., = 0 or x.=1

@ Theorem: the matching given by the
algorithm is optimal.



Outline of Iterative Rounding

© Formulation of the problem: solvability

© Characterization of optimal (fractional) solution: rank lemma

© Algorithm design: at every step,
* round some variables to O or |

* reduce the problem to a sub-problem while
maintaining the structure

© Analysis:

* correctness of the algorithm

* optimality/approximation



Makespan minimization

Input: set of unrelated machines and jobs. Jobs have different
processing times on different machines.

Output: an assignment job-machine that minimise the
maximum load

machines 5 makespan

time

NP-hard



Formulation

Given a bound, if there is a feasible assignment with makespan
at most the bound

z;; = 1 if job j is assigned to machine ¢

min 1 min 1
Zpijﬂ?z‘j <7 Vi Zpijmij <1; )
J J

L >0 Z,] Lgj > 0 Za]



Rank Lemma

¥ Lemma:

Assume that = be an extreme point solution s.t 0 < z;; < 1 Vt, j.

Then, there exist J' C J, M' C M such that:
o Z$2321\VI]EJ/ Zpijmij:TWEM’
i J

o the constraints corresponding to J' and M’
are linearly independent

o || +|M'| = B(G)




Algorithm

O lnitially, F < (0, M' < M

oWhile .J # ) do
0.3

olf x;; = 1thenupdate F + F U (i,5),J + J\j, T; < T; — pij

O Find an optimal extreme point solution x
of LP(G).Remove every (i,7) : x;; =0

o If there exists a machine ¢ s.t d(z) 1

then M’ <+ M'\ i J

O Return F



Analysis

@ Lemma: the algorithm is well-designed

@ Theorem: the assighment returned by the algorithm has
makespan at most twice the optimum.



Remarks on Iterative Rounding
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@ Recent development:

Nikhil Bansal, On a generalization of iterative and
randomized rounding, STOC’ 19



Primal-Dual
with Configuration LPs

[online algorithms, algorithmic game theory N.19]



Primal-Dual Methods

Primal Dual

© Principle: dual guides construction of primal solutions.

Designing an algorithm without directly solving
© Game: algorithm vs adversary

© Unified, simple yet powerful methods



LP-based methods

Given an optimization problem

8 Primal-Dual
© construct a mathematical (linear) formulation

© construct primal (integer) solution and dual (fractional) solution

© bound the primal/dual cost !

a lower fractional
bound  dual OPT OPT ALG

—————0—



Survival Routing

Network: graph with costs on edges ¢, : N — R™

Requests: each request demands k-edge disjoint paths

Output: routing (satisfying the requests) of

minimum cost
D ce(ne)

(&




Integrality gap

a lower fractional
bound OPT OPT ALG

— >

© Natural linear formulation: one request
min Z Ty L/m
e ‘/1/m§\:‘ OPT =1
er:l \1/m/ OPTf:m.L
e=1

re €{0,1}




Configuration LPs:a new way

o Systematically reduce integrality gap for (non-linear) problems.

™ Design primal-dual algorithms

© No need of separation oracles and rounding
(typical approaches for configuration LPs)

O Light-weight algorithms.



Configuration LP

A configuration A is subset of requests
r;; = 1 if request i selects strategy s;; € S;

24 = 1 iff for every request i € A, x;; = 1
for some strategy s;; : € € S;;

e, A
E Tij = V1
J:8:; €S
E ZeA = E Tij Vi, e
An€eA J:€ES;;
E e A — 1 Ve
A

LijsReA € {0,1} W,j,e,A



Primal-Dual

L
a; = — (increase of the total cost

due to the request)

1 (increase of the cost on
Bie = X the resource if the request
uses this resource)

decision rule

Ve =+ Zﬁie é fe(A)

1€A



Primal-Dual
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decision rule

AneA J:€E€Si; Ye T Z Bie < fe (A)

E _ EA
ZoA = 1€

smooth inequality
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Lijy,<eA > 0

0 Algorithm: at the arrival of a request, select a strategy that
incurs the minimum marginal cost



Smoothness

o Definition: a function f is (A, it)-smooth if

VA1 CAyC...CA,=AB={by,...,b,}

n

D O [f(AUb) — f(A)] <A f(B) + - f(A)

1=1

O Similar notion in algorithmic game theory (Roughgarden’l5,
N.19)



Competitiveness

@ Theorem: Assume that resource cost functions are (\, i)
-smooth.Then the algorithm is A/(1 — u)-competitive.

O Proof: . Z e Z .

(4 (&
L
a; = — (increase of the total cost a; < Z By Vi, j
due to the request) =iy
. (increase of the cost on Ve + Z Bie < fe(A) Ve, A
Bi e = — the resource if the request 1€ A

uses this resource)

Ve = —% (the total cost of the resource)



Applications

@ Corollary: If the cost functions are f(z) = 2 then the
algorithm is O(ozo‘)-competitive.This is optimal for several
problems.

0 Proof:

a— 1

84

The functions is <@ (Oéa_l), ) -smooth



Economies vs Diseconomies

cost

economies : diseconomies
of scale of scale
(sub-modular; etc) : (convex, etc)
: >
quantities

Arbitrarily-grown cost functions



Energy-Efficient Scheduling

——Energy minimization \

Machine: unrelated machines, speed scalable

Jobs: release 7, deadline d;, volume p;;, preemptive
non-migration

Energy: energy power function is P(s(?)), typically s(¢)“

Goal: complete all jobs and minimize the total energy
\. J




Hints

O a strategy of a job is a feasible execution

© a configuration is a feasible schedule

O greedy assighment



Conclusion

o |terative Rounding
@ Primal-dual framework for non-linear/non-convex functions.

O Direction:

* scheduling with precedence constraints: SDP
and non-convex math programming,

* |learning and duality,

* fairness and duality.

T}tank 7@0:!/



